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If all quantities are evaluated at p=a, subtraction of
(A.10) and (A.11) from (A.22) and (A.23) yields

H¢n(a+ 0) - H¢n(a - O) = qlln(jEzn) + q12nE¢n
(A.27)
J[ Hzn(a +0) - Hzn(a - 0)] = q12n(jEzn) +q22nE¢n .
(A28)
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Wide-Band Equivalent Circuits of Microwave
Planar Networks

GUGLIELMO D’INZEO, FRANCO GIANNINI, aN\p ROBERTO SORRENTINO, MEMBER IEEE

Abstract—A broad-band equivalent circuit of a generic microwave
planar network is derived in terms of lumped constant elements. Contrary
to previously proposed equivalent circuits, whose elements are strongly
frequency dependent, the elements of the new one show only a smooth
dependence on the frequency, because of the dispersion properties of
microstrip structures. The equivalent circuit proposed is therefore easy to
handle and is shown to be a useful basis for direct synthesis of planar
structures. Good agreement with the theory is demonstrated by experi-
ments performed on structures with different geometries up to 12.5 GHz,
by using equivalent circuits whose elements are assumed to be constant
with the frequency.

1. INTRODUCTION

NE OF THE major problems in the analysis and
design of MIC’s is that of determining the parasitics.
In a general planar networks parasitics arise essentially
from two distinct phenomena: the existence of fringing
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fields and the excitation of higher order modes at the
discontinuities.

While an infinite microstrip line can be characterized
by an effective width and an effective permittivity [1),
such an approach is no more valid in the case of a planar
circuit or, in particular, in the presence of discontinuities,
In such cases, in fact, the electromagnetic (EM) field is no
more a quasi-TEM one, but results from the contribution
of more complicated field distributions to which a varia-
tion both of fringe effects and of the EM energy storage
have to be ascribed.

A general method of analysis of microwave planar
structures, which accounts for fringe field effects, has
been recently presented [2]; the approach may be re-
garded as an extension of the magnetic wall model of
microstrip lines [3], [4]. Fringe effects, in fact, are taken
into account through effective dimensions and effective
permittivities which depend on the field distribution inside
the planar structure [S]. On the basis of this method, in the
present paper the lumped element equivalent circuit, in
which parasitics are automatically taken into account,is
derived for a general planar network.

The equivalent circuit approach has been extensively
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applied to the particular case of a discontinuity between
two lines of different characteristic impedances. In such a
case the effect of fringing fields consists of an increased
capacitance of the structure, while the magnetic energy
stored in the higher order evanescent modes excited at the
discontinuity can be characterized through a series induc-
tor. Equivalent capacitors and inductors of a single step
discontinuity between two semi-infinite microstrip lines
have been calculated through a quasi-static approach [6],
by Gopinath together with several coworkers [7]-[10]. The
resulting equivalent circuit, however, cannot be applied at
high frequencies, nor in the case of interacting discontinu-
ities. In fact, if the frequency is not sufficiently low, the
contribution of the evanescent higher order modes be-
comes important as to modify both the fringing field
distribution and the EM energy storage at the discontinu-

- ity; in addition, when, as in practical cases, more than one
discontinuity is present, the interaction between the dis-
continuities takes place through higher order modes. It
follows that this approach is only valid well below cutoff
of the first higher mode of the wider microstrip line; in
particular, it cannot explain the existence of transmission
zeros in planar structures [11], [12].

Following a different theoretical approach, Bianco et al.
[11] have proposed broad-band equivalent circiits for
single and double step discontinuities; fringe effects, how-
ever, are taken into account through a rather approxi-
mated technique, so that the applicability of these equiva-
lent circuits is strongly limited.

The dynamic approach by Menzel and Wolff [12], which
accounts for the frequency variation of the energy stored
in the evanescent higher order modes, has been used by
Kompa [13] to obtain a lumped-element equivalent circuit
of an abrupt impedance step.

However, Kompa’s equivalent circuit contains elements
which are strongly variable with the frequency, so that it
is not easy to handle when broad-band simulation is
needed. On the contrary, the elements of the equivalent
circuits proposed here are frequency dependent only be-
cause of the dispersion properties of microstrip circuits so
that, in a first approximation, they may be assumed to be
constant with the frequency, also in broad-band simula-
tions. Finally, it should be stressed that, contrary to the
equivalent circuits proposed early, the present one can be
applied to structures having geometries different from the
rectangular one.

II. TuEe GENERAL EQUIVALENT CIRCUIT

A generic two-port microwave planar network is
sketched in Fig. 1. Following [2), the analysis is carried
out firstly by determining in the domain S of the xy plane
the orthonormalized set of eigenfunctions of the bidimen-
sional Helmholtz equation

Vi, +k2p,=0 1

with homogeneous Neumann boundary conditions. In the
hypotheses that losses are negligible, that higher order
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Fig. 1. The planar two-port network.

modes on the connecting lines are evanescent and that
line widths are much smaller than the structure’s dimen-
sions, the impedance matrix of the network is given by

o0
[Z]= Zo[zm] 2
with
__Jo h R}, R, R,
[ZM]_ "-’31_“’2 Em | Rpa R R?nZ ()

In (2a) w,,=k,,/V pe,, is the mth structure’s resonant
frequency

i=1,2 (2b)
is the coupling coefficient between the mth resonant mode
and the TEM wave traveling on the ith line; [, is the
portion of the contour of the planar structure correspond-
ing to the ith port; k2 and ¢,, are the mth eigenvalue and
eigenfunction of (1), respectively; ¢, is the effective per-
mittivity of the mth resonant mode [5]; 4 is the substrate’s
thickness; w; . is the effective width of the ith line [1].
The first term of the series (2), for m=0, has wy=0 and
thus corresponds to the mode resonating at zero frequency,

for which ¢,=1/ V'S, where S is the area of the planar
network, and Ry =Ry, = 1. From (2)-(2b) it follows that,
for a planar network of given geometry, its filtering prop-
erties depend on the coupling coefficients, i.e., on the
positions and widths of the ports.

According to [5], fringe effects are taken into account in
previous formulas by ascribing to the structure effective
dimensions, and by introducing a different effective per-
mittivity for each resonant mode. As a consequence, each
resonant frequency of the planar structure is shifted with
respect to the case of magnetic wall model. A typical
example is the modal inversion between the TM,,, and
TM,,, modes demonstrated in a circular microstrip [14].

As can be easily seen, each term (2a) of (2) can be
realized in the form of an antiresonant LC cell (with the
exception of the first term which corresponds to a pure
capacitance) connected to two ideal transformers whose
transformer ratios are given by the coupling coefficients
(2b). This leads to the equivalent circuit shown in Fig. 2 as
the series connection of an infinite number of such cells.
This equivalent circuit is of the type of the one derived in
[19]. However, there is a substantial difference between
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Fig. 2. The general equivalent circuit of a two-port planar network.

them, since each LC cell of the equivalent circuit of Fig. 2
is derived from an effective model (dimensions and per-
mittivity) of the planar structure, which is in general
different for each resonant mode.

For practical application, only a finite number of such
resonant cells has to be taken into account, depending on
the frequency range of interest and on the approximation
to be obtained. It is worth noting that the broad-band
equivalent circuits previously proposed [11], [13] contain
elements which are so strongly frequency dependent as to
become infinite at certain frequencies. On the contrary,
the equivalent circuit elements of Fig. 2 are only smoothly
frequency dependent because of the well-known disper-
sion characteristic of the microstrip structure and there-
fore have always finite values. Furthermore, in most cases,
the frequency dependence can be neglected with a fairly
good approximation. In all the experiments reported be-
low, in fact, a good agreement is shown up to 12.5 GHz,
through the use of equivalent circuits whose elements are
assumed to be frequency independent.

Typical features of a microwave planar network can be
shown through the equivalent circuit of Fig. 2. For exam-
ple, suppose the signal frequency coincides with the reso-
nant frequency w, of the nth cell; it is immediately found
that the transformer radii of such a cell, i.e., the coupling
coefficients of the corresponding mode, determine the
relationship between the currents I;, I, at the ports of the
circuit

R, I,+R,,1,=0.

If R,,#0 and R,,=0, i.e., the nth mode is uncoupled
to port 2, then I, must be zero, and the circuit presents an
open circuit at the port 1 for w=w,. This has been called a
modal transmission zero of the microwave planar network
[2], [15]). On the contrary suppose |R,|=|R,,|; if, for
w=w,, the contribution of all the other cells is negligible,
as it generally happens, one obtains

W/ hL=v,/(=1,).
This means that the impedance at the second port is

transferred at the first port, thus w=w, is a frequency of
null attenuation.
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Fig. 3. The equivalent circuit of a two-port symmetrical structure.

Therefore, depending on the coupling coefficients, the
same resonant mode of the microwave structure can give
place either to a transmission zero or to a reflection zero.

IIL

The equivalent circuit of Fig. 2 is generally of impracti-
cal use. A more suitable equivalent circuit can be derived
in the case of symmetrical structures. When the planar
network is symmetrical, the modal solutions of (1) can be
divided into even and odd modes, depending whether ¢,,
has equal or opposite values at the two ports. As a
consequence, the coupling coefficients are related by

le (3)
where a,,=1 for even modes, a,,= —1 for odd modes.
Separating the contributions of the even and odd modes,

the impedance parameters (2) of a symmetrical network
can be written, because of (3)

SYMMETRICAL STRUCTURES

Rm2=am

JwhR2, /e JwhR%, /€4
Z,=Zp=2.,— i, R e
W, —w W™ w
1
=_2’(Zev+Zod)
JwhR2, [€ JWhR2, /€
Zyp=2Z;=2,, T 2ev T4edTT 5 5
Wey — W Woq — W

1
= 5 (Zev—zod) (4)

where ev and od stand for even and odd, respectively.
Expressions (4) lead to the symmetrical lattice realization
of Fig. 3, which appears particularly useful since it avoids
use of transformers. As is known, such a two-port network
presents a pole of attenuation when the signal frequency is
such that

Zev(w)=zod(w)' (5)
Now, since Foster’s theorem applies to both Z_, and Z,,
which are pure reactances, it is evident that (5) is satisfied
if Z,, remains finite between two consecutive poles of Z,,
or vice versa. In other words, if two consecutive resonant
frequencies of the structure are both even (odd), then a
pole of attenuation takes place between them. This has
been called an interaction transmission zero [2], [15]. On
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Fig. 4. Comparison between the experimental |s,,| of a rectangular structure and the theoretical |5, |
of the equivalent circuit indicated. (Alumina substrate, €, =10, #=0.0635 cm; /=0.68 cm, b=1.5 cm,

connecting line impedance =50 2).

the other hand, in a symmetrical lattice structure, a
frequency of null attenuation occurs when

Zev( w)Zod(w) = "72 (6)

where 7 is the characteristic impedance of the connecting
lines. In the limit when u tends to infinite, condition (6) is
satisfied when w is coincident with a pole of Z_, or Z 4,
i.e., with a resonant frequency of the structure. As can be
easily inferred from (2)-(2b), in fact, for n—oc0, the im-
pedance parameters of the planar network tend to finite
values, except at the resonant frequencies. In practical
cases, because of the finite widths of the lines, the fre-
quencies of null attenuation are shifted from the resonant
frequencies [16]. In some cases, however, it happens that a
resonant mode does not give place to a reflection zero
except for 5 greater than a minimum value. In fact, let us
rewrite condition (6) in the form

Xev= _nz/Xod

(62)
where X, = ~jZ,,, X ,q= —JZ.q. Since, because of Foster’s
theorem, X., is an always increasing function of the
frequency, in a suitable interval enclosing a pole w,,, X,
assumes all the values from —oo to +oo; if 1/X 4 re-
mains finite in this interval, then (6a) is necessarily satis-
fied in that interval at a frequency @; the higher n the
closer @ to w,,. On the contrary, if 1/X_, has a pole near
w,,, it can be easily inferred that (6a) is satisfied only for
sufficiently high values of 7.

An example of application of the equivalent circuit of
Fig. 3 for characterizing the frequency behavior of a
rectangular planar structure in shown in Fig. 4, where the

scattering parameter |s,; | of the equivalent circuit is shown

as a function of frequency in the range 0-12.5 GHz and is
compared with the experimental measurements. As can be
seen, good agreement is obtained by taking into account
only the first six resonant modes of the structure, five of
which fall in the range 0-12.5 GHz. Two poles of attenua-
tion are located between the resonant frequencies wgy— wy,
(even modes) and w,;y—w,, (0dd modes), according to the
rule previously stated. Because of the presence of these
poles of attenuation, produced by the interaction between
resonant modes involving both an x- and y-field depen-
dence, this structure may not be analyzed through a
quasi-static approach, except well below 5 GHz. Let us
observe, moreover, that while each one of the resonant
frequencies wyy, Wy, Woy, gives place to a reflection zero,
wy, and w;, do not. This is due to the fact that the
connecting lines impedances are too low (50 §2) so that
condition (6) is not satisfied both for wy, and w,, (see Fig.
5(a)). On the contrary, condition (6) would be satisfied if
the connecting lines would have a very high impedance
(see Fig. 5(b)).

So far, we have implicitly assumed that only one inde-
pendent eigensolution of (1) exists for each k2. On the
contrary, in typical cases such those of circular, annular
or square structures, (1) has two linearly independent
solutions corresponding to the same eigenvalue, so that
there are two resonant modes with the same resonant
frequency. If the two degenerate modes are one even and
the other one odd, both the even and the odd branches of
the equivalent lattice circuit (Fig. 3) become open circuits
at the same resonant frequency, giving place to a trans-
mission zero. This type of zero has been classified among
the modal zeros [2] since it occurs at a structure’s resonant
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Fig. 5. Plots of X, and —1/X 4 of the rectangular structure of Fig. 4
with (a) =50 &, and (b) =175 Q.

the effective permittivity of the degenerate (m, n) mode

frequency. Unless the circuit of Fig. 3 is valid also in case
of degenerate structures, some simplifications can be made

accounting for the mode degeneracy.
As an example, let us consider an annular two-port

planar network. According to the analysis of this micro-
wave structure [17], which is based on [2], the elements of
the even and odd branches of the equivalent lattice struc-

ture can be written as follows:
€

. C(od)=
" hR2,(1—cosmy)

mn

emn

CeV =
mn 2 ’
hR;, . (1+cosmy)
phR., (1 —cos my)

2
kmn

pAR, (14 cosmy) L[ Od_
> ~mn

L=

where ¢ is the angle between the connecting lines, ¢, is

k?nn
(™

Izmn= 1/\/;AmnF‘mn(kmnrout)Sin mq>/m<p
an(kmmr) =Jm(kmnr)+KNm(kmnr)

frwr[ an(kmnr)]zdr] -

"1in

Amn=8m{
K= _Jr/n(kmnrout)/Nr;(kmnrout)

12, m==0’
@ is the angle subtended by the ports, and r,,, 7, are the
inner and outer radii of the ring, respectively.
Expressions (7) show that, except when |cos my|=1,

each resonant frequency corresponds to a modal zero,
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since the corresponding degenerate modes contribute to T GO 1081 Lowmpass fiiter
. . - —- T ry — atter
both the even and odd parts of the [ Z] matrix. In particu- -0 \hiw_ er el
lar, if cos my =0, the lattice structure can be modified as
to realize the corresponding pole of the Z matrix as a —
private pole of Z,;=Z,,. On the contrary, if cosmy=1,
or cosmy=—1, a resonant cell will appear only at the
even, or odd, branch of the lattice equivalent circuit so ) . )
that, according to the previous discussion, it generally 29 s T RSN
gives place to a reflection zero. Fig. 6 shows the experi- Fig. 7. |sy| of the filtering structure synthesized versus the frequency.

mental and theoretical behaviors of the scattering parame-
ter |s,;| of an annular microstrip with orthogonal connect-
ing lines (Y =7/2) versus the frequency. The equivalent
circuit used for the theoretical simulation is indicated in
the same figure, while the values of the LC elements are
quoied in Table I. The resonant frequencies w,; and wy,,
for which cos my =0, give place to two transmission zeros
corresponding to two private poles of Z,, =Z,, (see equiv-
alent circuit) while frequencies of null attenuation are
located close to the resonant frequencies w,;, w, (for
which [cos my|=1).

The availability of lumped-element equivalent circuits
of microwave planar network, besides allowing a simple

(Alumina substrate, €,=10, /=0.0635 c¢m, /=0.020 cm, »=0.845 cm,
w=0.060 cm, p, =0.162 cm, reference frequency f,=5 GHz).

characterization of their behavior, may be also the basis
for obtaining synthesis procedures of these structures,
starting from the conventional synthesis procedure of
lumped element circuits.

An example is illustrated in Fig. 7 where the measured
scattering parameter |s,,| of a rectangular two-port struc-
ture, realizing a Cauer—Chebycheff low-pass filter is
plotted versus the frequency.

The rectangular structure has been synthesized accord-
ing to [18]. For comparison, the same figure shows the
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behaviors of the CC 31031 prototype and that obtained
according to [2).
IV. CONCLUSIONS

A broad-band equivalent circuit of a generic microwave
planar network has been derived in terms of lumped-
constant elements. These elements are only smoothly
frequency dependent, because of the dispersion properties
of microstrips, so that they may be considered, with good
approximation, to be constant with the frequency, even in
broad-band simulations.

Contrary to previously proposed equivalent circuits,
which are strongly frequency dependent, the present one
is easy to handle and can be a useful basis for designing
microstrip planar structures starting from conventional
synthesis procedures.

Experiments performed up to 12.5 GHz on structures
with different geometries have shown good agreement
with theoretical results.
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High-Accuracy Numerical Data on Propagation
Characteristics of a-Power Graded-Core Fibers
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Abstract— High-accuracy data of normalized cutoff frequencies, propa-
gation constants, and delay time of LP,,, modes for a-power graded-core
fibers (a=1, 2, 4, and 10) are obtained by using two entirely different
methods: power-series expansion and finite element methods, and the
results are compared. The difference between cutoff frequencies obtained
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by these methods is less than 0.005 percent for most of the LP modes. The
obtained data are accurate enough to be used as the standard for estimat-
ing the accuracy of other various analyses.

I. INTRODUCTION

ARIOUS methods have been presented for the analy-
sis of propagation characteristics of optical fibers
having arbitrary refractive-index profiles. Examples of
those are the WKB method, [1] power-series expansion
method, [2] Rayleigh-Ritz method [3], finite element
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