
IEEE TRANSACTIONS ON MICROWAV% THSORY AND TSCHNIQUSS, VOL. MIT-28, NO. 10, OCTOBER 1980 1107

If all quantities are evaluated at p= a, subtraction of

(A.1O) and (Al 1) from (A.22) and (A.23) yields

~+,l(a+ O) –H,Ja-()) =qlJjE,~) +4n~E4~

(A.27)

j[ Hzn(u+o) –~.n(u–o)] =qlzn(.jEz~) +q22n E@n.

(A.28)

ACKNOWLEDGMENT

The authors would like to thank L. Rousseau for per-

forming the numerical calculations and Mrs. E. Cone for

typing the manuscript.

REFERENCES

[1] P. Delogne, “Basic mechanismsof tunnel propagation,” Radio Sci.,
vol. 11, no. 4, pp. 295–303, 1976.

[2] J. R. Wait and D. A. Hill, “Propagation along a braided coaxial

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

cable in a circular tunnel,” IEEE Trans. Microwaee Theory Tech.,

vol. MTT-23, pp. 401-405, 1975.

D. A. Hiff nnd J. R. Wart, “Calculated transmission loss for a
leaky feeder communication system in a circular tmmel~ Radio
Sci., vol. 11, no. 4, pp. 315-321, 1976.
J. R. Wait and D. A. Hifl, “Influence of spatial dispersion of the
shield transfer impedanceof a braided coaxial cable,” IEEE Tram.
Microwave Theory Tech., vol. MTT-25, pp. 72-74, 1977.
J. R. Wait, “Electromagnetic theory of the loosely braided eoaxhf
cable: Part I: IEEE Trans. Microwaoe Theory Tech., vol. MIT-24,
no. 9, pp. 547–553, 1976.
H. Kaden, “Open circularly eylindricaf metal strip as shield and
return circuit of a single-wire line,” Siemens Forsch. -u. Enfwickl..
Ber., vol. 7, no. 2, pp. 82–90, 1978.
B. Noble, Methods Based on the Wiener-Hopf Technique. New
York: Pergamon, 1958.

C. L. Chen and T. T. W% ‘Theory of the Long Dipole Anterma~
in ,4 nterma 17WOT, Part 1, R. E. Collin and F. J. Zucker, 13ds.

New York: McGraw-Ijili, 1969.

P. Poincelot, Pr;cis d’ Electrommm%sme i%orioue. Dunod. 1%3,,,
pp. 83-90.
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and
Products. New York: Academic, 1965.

Wide-Band Equivalent Circuits of Microwave
Planar Networks

GUGLIELMO DINZEO, FRANCO GIANNINI, AND ROBEllTO SORRENTINO, MEMBER IEEE

Abstract-A broad-band eqrdvrdent circuit of a generic ndcrowave

planar network is derived in terms of lumped constant elements. Contrary

to previously proposed equivalent cireui@ whose elements are strongty

frequency dependent the elements of the new one show only a mth
dependence on tbe frequency, because of the dispersion properties of

microstrip structures. The cquivafent circuit proposed is therefore easy to

handte and is shown to be a usefuf baaii for direct syntbeaii of planar

structures. Good agreement with the theory is demonstrated by experi-

ments performed on stru* with different geometries up to 12.5 G%

by using equivalent circuits whose elements are aasmucd to be constant

with the frequency.

I. INTRODUCTION

o NE OF THE major problems in the analysis and

design of MIC’S is that of determining the parasitic.

In a general planar networks parasitic arise essentially

from two distinct phenomena: the existence of fringing
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fields and the excitation of higher order modes at the

discontinuities.

While an infinite microstrip line can be characterized

by an effective width and an effective permittivity [III,

such an approach is no more valid in the case of a planar

circuit or, in particular, in the presence of discontinuities,

In such cases, in fact, the electromagnetic (EM) field is no

more a quasi-TEM one, but results from the contribution

of more complicated field distributions to which a varia

tion both of fringe effects and of the EM energy storag~

have to be ascribed.

A general method of analysis of microwave planar

structures, which accounts for fringe field effects, has

been recently presented [2]; the approach may be re-

garded as an extension of the magnetic wall model of

rnicrostrip lines [3], [4]. Fringe effects, in fact, are taken

into account through effective dimensions and effective

permittivities which depend on the field distribution inside

the planar structure [5]. On the basis of this method, in the

present paper the lumped element equivalent circuit, in

which parasitic are automatically taken into account, is

derived for a general planar network.

The equivalent circuit approach has been extensively
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applied to the particular case of a discontinuity between

two lines of different characteristic impedances. In such a

case the effect of fringing fields consists of an increased

capacitance of the structure, while the magnetic energy

stored in the higher order evanescent modes excited at the

discontinuity can be characterized through a series induc-

tor. Equivalent capacitors and inductors of a single step

discontinuity between two semi-infinite microstrip lines

have been calculated through a quasi-static approach [6],

by Gopinath together with several coworkers [7]- [10]. The

resulting equivalent circuit, however, cannot be applied at

high frequencies, nor in the case of interacting discontinu-

ities, In fact, if the frequency is not sufficiently low, the

contribution of the evanescent higher order modes be-

comes important as to modify both the fringing field

distribution and the EM energy storage at the discontinu-

“ ity; in addition, when, as in practical cases, more than one

discontinuity is present, the interaction between the dis-

continuities takes place through higher order modes, It

follows that this approach is only valid well below cutoff

of the first higher mode of the wider microstrip line; in

particular, it cannot explain the existence of transmission
zeros in planar structures [1 1], [12].

Following a different theoretical approach, Bianco et al.

[11] have proposed broad-band equivalent circtiits for

single and double step discontinuities; fringe effects, how-

ever, are taken into account through a rather approxi-

mated technique, so that the applicability of these equiva-

lent circuits is strongly limited.

The dynamic approach by Menzel and Wolff [12], which

accounts for the frequency variation of the energy stored

in the evanescent higher order modes, has been used by

Kompa [13] to obtain a lumped-element equivalent circuit

of an abrupt impedance step.

However, Kompa’s equivalent circuit contains elements

which are strongly variable with the frequency, so that it

is not easy to handle when broad-band simulation is

needed. On the contrary, the elements of the equivalent

circuits proposed here are frequency dependent only be-

cause of the dispersion properties of microstrip circuits so

that, in a first approximation, they may be assumed to be

constant with the frequency, also in broad-band simula-

tions. Finally, it should be stressed that, contrary to the

equivalent circuits proposed early, the present one can be

applied to structures having geometries different from the

rectangular one.

11, THE GENERAL EQUIVALENT CIRCUIT

A generic two-port microwave planar network is

sketched in Fig. 1. Following [2], the analysis is carried

out firstly by determining in the domain S of the xy plane

the orthonormalized set of eigenfunctions of the bidimen-

sional Hehnholtz equation

V2+M + k:~. = O (1)

with homogeneous Neumann boundary conditions. In the

hypotheses that losses are negligible, that higher order

s

Iz,
b“-. -%”’

Fig. 1. The planar two-port network.

modes on the connecting lines are evanescent and that

line widths are much smaller than the structure’s dimen-

sions, the impedance matrix of the network is given by
‘m

[z]= ~ [Zm]

with

(2)

(2a)

In (2a) co~= kJ ~ is the mth structure’s resonant

frequency

1
R~i= —

J
~~dl, i=l,2

w.z,eff [i

(2b)

is the coupling coefficient between the mth resonant mode

and the TEM wave traveling on the ith line; /i is the

portion of the contour of the planar structure correspond-

ing to the ith port; k; and +~ are the mth eigenvalue and

eigenfunction of (l), respectively; cm is the effective per-

mittivity of the m th resonant mode [5]; h is the substrate’s

thickness; Wi,eff is the effective width of the ith line [1].

The first term of the series (2), for m= O, has OJO= O and

thus corresponds to the mode resonating at zero frequency,

for which +0= 1/l@, where S is the area of the planar

network, and Rol = R ~2= 1. From (2)–(2b) it follows that,

for a planar network of given geometry, its filtering prop-

erties depend on the coupling coefficients, i.e., on the

positions and widths of the ports.

According to [5], fringe effects are taken into account in

previous formulas by ascribing to the structure effective

dimensions, and by introducing a different effective per-

mittivity for each resonant mode. As a consequence, each

resonant frequency of the planar structure is shifted with

respect to the case of magnetic wall model. A typical

example is the modal inversion between the TM410 and

TM120 modes demonstrated in a circular microstrip [14].

As can be easily seen, each term (2a) of (2) can be

realized in the form of an antiresonant LC cell (with the

exception of the first term which corresponds to a pure

capacitance) connected to two ideal transformers whose

transformer ratios are given by the coupling coefficients

(2b). This leads to the equivalent circuit shown in Fig. 2 as

the series connection of an infinite number of such cells.

This equivalent circuit is of the type of the one derived in

[19]. However, there is a substantial difference between
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1:1 1:1

Fig. 2. The generafequivalent circuit of a two-port planar network.

them, since each LC cell of the equivalent circuit of Fig. 2

is derived from an effective model (dimensions and per-

mittivity) of the planar structure, which is in general

different for each resonant mode.

For practical application, only a finite number of such

resonant cells has to be taken into account, depending on

the frequency range of interest and on the approximation

to be obtained. It is worth noting that the broad-band

equivalent circuits previously proposed [11 ], [13] contain

elements which are so strongly frequency dependent as to

become infinite at certain frequencies. On the contrary,

the equivalent circuit elements of Fig. 2 are only smoothly

frequency dependent because of the well-known disper-

sion characteristic of the microstrip structure and there-

fore have always finite values. Furthermore, in most cases,

the frequency dependence can be neglected with a fairly

good approximation. In all the experiments reported be-

low, in fact, a good agreement is shown up to 12.5 GHz,

through the use of equivalent circuits whose elements are

assumed to be frequency independent.

Typical features of a microwave planar network can be

shown through the equivalent circuit of Fig. 2. For exam-

ple, suppose the signal frequency coincides with the reso-

nant frequency u. of the n th cell; it is immediately found

that the transformer radii of such a cell, i.e., the coupling

coefficients of the corresponding mode, determine the

relationship between the currents 11, 12 at the ports of the

circuit

R~111+R~21z=0.

If Rnl #O and R.z = O, i.e., the nth mode is uncoupled

to port 2, then 11 must be zero, and the circuit presents an

open circuit at the port 1 for u = an. This has been called a

modal transmission zero of the microwave planar network

[2], [15]. On the contrary suppose [R~l I = IR.z 1; if, for

~= o., the contribution of all the other cells is negligible,

as it generally happens, one obtains

vi/Ii = vJ(-z2).

This means that the impedance at the second port is

transferred at the first port, thus u= co” is a frequency of

null attenuation.

2 LOd

--Q-w:’-
/

co/2

Q

/
/

/’
2Lev / “

.

Q .
, “ ‘cev/2

/
.

/’ Q
/ ‘,.

/’ ‘\\

~-c ---------------------------
Fig. 3. The equivalent circuit of a two-port symmetrical structure,

Therefore, depending on the coupling coefficients, the

same resonant mode of the microwave structure can give

place either to a transmission zero or to a reflection zero.

III. SYMMETRICm STRUCTURES

The equivalent circuit of Fig. 2 is generally of impracti-

cal use. A more suitable equivalent circuit can be derived

in the case of symmetrical structures. When the planar

network is symmetrical, the modal solutions of (1) can be

divided into even and odd modes, depending whether (hw

has equal or opposite values at the two ports. As a

consequence, the coupling coefficients are related by

where am= 1 for even modes, am= – 1 for odd modes,

Separating the contributions of the even and odd modes,

the impedance parameters (2) of a symmetrical network

can be written, because of (3)

=~ z +Zod)Z( e,

z,’ = z’, = Xev
juhR&/ce, _ ~ JUhR~/EOd

6.):,-U’ 0’ (J:d —w’

=1 z –Zod)Z( e, ((4)

where ev and od stand for even and odd, respectively.

Expressions (4) lead to the symmetrical lattice realization

of Fig. 3, which appears particularly useful since it avoids

use of transformers. As is known, such a two-port network

presents a pole of attenuation when the signal frequency is

such that

Zev((d)=zd(c.o). (5)

Now, since Foster’s theorem applies to both Z.v and z.’,
which are pure reactance, it is evident that (5) is satisfied

if Zev remains finite between two consecutive poles of Zo’,

or vice versa. In other words, if two consecutive resonant

frequencies of the structure are both even (odd), then a

pole of attenuation takes place between them. This has

been called an interaction transmission zero [2], [15]. On
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Fig. 4. Comparison between the experimental 1S2,I of a rectangular structure and the theoretical IS21I
of the equivalent circuit indicated. (Atumina substrate, 6,= 10, h =0.0635 cm; /=0.68 cm, b= 1.5 cm,
connecting line impedance q =50 Q).

the other hand, in a symmetrical lattice structure, a

frequency of null attenuation occurs when

‘ev(@)zod(u)=~2 (6)

where q is the characteristic impedance of the connecting

lines. In the limit when q tends to infinite, condition (6) is

satisfied when u is coincident with a pole of Z.v or ZOd,

i.e., with a resonant frequency of the structure. As can be

easily inferred from (2)–(2b), in fact, for qs m, the im-

pedance parameters of the planar network tend to finite

values, except at the resonant frequencies. In practical

cases, because of the finite widths of the lines, the fre-

quencies of null attenuation are shifted from the resonant

frequencies [16]. In some cases, however, it happens that a

resonant mode does not give place to a reflection zero

except for q greater than a minimum value. In fact, let us

rewrite condition (6) in the form

Xev = ‘~2/& (6a)

where X,v = –jZev, XOd= –jZti. Since, because of Foster’s

theorem, X.. is an always increasing function of the
frequency, in a suitable interval enclosing a pole a.,, X.v

assumes all the values from – eo to + m; if 1/X~ re-

mains finite in this interval, then (6a) is necessarily satis-

fied in that interval at a frequency G; the higher q the

closer ti to 6J=V.On the contrary, if 1/XOd has a pole near

~v, it can be easily inferred that (6a) is satisfied only fora

sufficiently high values of q.

An example of application of the equivalent circuit of

Fig. 3 for characterizing the frequency behavior of a

rectangular planar structure in shown in Fig. 4, where the

scattering parameter 1.s21I of the equivalent circuit is shown

as a function of frequency in the range O– 12.5 GHz and is

compared with the experimental measurements. As can be

seen, good agreement is obtained by taking into account

only the first six resonant modes of the structure, five of

which fall in the range O– 12.5 GHz. Two poles of attenua-

tion are located between the resonant frequencies am – U02

(even modes) and UIO – ~12 (odd modes), according to the

rule previously stated. Because of the presence of these

poles of attenuation, produced by the interaction between

resonant modes involving both an x- and y-field depen-

dence, this structure may not be analyzed through a

quasi-static approach, except well below 5 GHz. Let us

observe, moreover, that while each one of the resonant

frequencies Ww, ti12, Uw, gives place to a reflection zero,

ti02 and ti10 do not. This is due to the fact that the

connecting lines impedances are too low (50 Q) so that

condition (6) is not satisfied both for U02 and u lo (see Fig.

5(a)). On the contrary, condition (6) would be satisfied if

the connecting lines would have a very high impedance

(see Fig. 5(b)).

So far, we have implicitly assumed that only one inde-

pendent eigensolution of (1) exists for each k:. On the

contrary, in typical cases such those of circular, annular

or square structures, (1) has two linearly independent

solutions corresponding to the same eigenvalue, so that

there are two resonant modes with the same resonant

frequency. If the two degenerate modes are one even and

the other one odd, both the even and the odd branches of

the equivalent lattice circuit (Fig. 3) become open circuits

at the same resonant frequency, giving place to a trans-

mission zero. This type of zero has been classified among

the modal zeros [2] since it occurs at a structure’s resonant
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Fig. 5. Plots of X& and – 1/X~ of the rectangular structure of Fig. 4
with (a) q= 50 Q, and (b) q= 175$2.

frequency. Unless the circuit of Fig. 3 is valid also in case

of degenerate structures, some simplifications can be made

accounting for the mode degeneracy.

As an example, let us consider an annular two-port

planar network. According to the analysis of this microw-

ave structure [17], which is based on [2], the elements of

the even and odd branches of the equivalent lattice struc-

ture can be written as follows:

(7)

where ~ is the angle between the connecting lines, c~n is

the effective permittivity of the degenerate (m, n) mode

K= –J;(km.~..t)/~L(k~.r..t )

{
8~= 1’ ‘=O.

2, m+O

T is the angle subtended by the ports, and ri~, rOUtare the

inner and outer radii of the ring, respectively.

Expressions (7) show that, except when [COSm+ I‘= 1,

each resonant frequency corresponds to a modal zero,
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Fig. 6. Comparison between the experimental IS21I of an anmdar structure and the theoretical 1s21I of
the equivalent circuit indicated. (Epsilam substrate, c,= 10, h= 0.0635 cm; rti = 0.4 cm, rout= 0.7 cm,
w= O.06 cm, +=900).

TABLE I

Mode C(pf=-) L(nH) f res(GHz)

0,0 8.81555 0

1,1

I 3“96’61I 5“99266I 3“2664’I
2,1

I
3.27220

I
1.91647

I
6.35543

3,1 2.71207 1.10166 9.20741 I
4,1 2.37537 0.75450 11.88834

since the corresponding degenerate modes contribute to

both the even and odd parts of the [Z] matrix. In particu-

lar, if cos ws~ = O, the lattice structure can be modified as

to realize the corresponding pole of the Z matrix as a

private pole of ZI ~= Z22. On the contrary, if cos m+ = 1,

or cos m+ = – 1, a resonant cell will appear only at the

even, or odd, branch of the lattice equivalent circuit so

that, according to the previous discussion, it generally

gives place to a reflection zero. Fig. 6 shows the experi-

mental and theoretical behaviors of the scattering parame-
ter ~Szl I of an annular microstrip with orthogonal connect-

ing lines (Y= 7r/2) versus the frequency. The equivalent

circuit used for the theoretical simulation is indicated in

the same figure, while the values of the LC elements are

quoted in Table I. The resonant frequencies o ~~ and ti31,

for which cos mrj = O, give place to two transmission zeros

corresponding to two private poles of Z1 ~= Z22 (see equiv-

alent circuit) while frequencies of null attenuation are

located close to the resonant frequencies U21, W41 (for

which Ices m+b I = 1).

The availability of lumped-element equivalent circuits

of microwave planar network, besides allowing a simple

lS2,1dB
I 1 1 1

)

1

-2 .
-3 +

-10

.fl
i

Wl= -
*:3”’b

-20

I
— I xper, me!, t

----- [:C: .31031 Lw-Da,s ,,, te,’

-–- Theo?y -.-.11,, [2]
-:30 ~

-35

25 5 75 10 12 5

F (G+(z)

Fig. 7. IS2, I of the filtering structure synthesized versus the frequency.

(Alumina substrate, t,= 10, h= 0.0635 cm, 1=0.020 cm, b= 0,845 cm,
w= 0.060 cm,p ~= 0.162 cm, reference frequency j = 5 GHz).

characterization of their behavior, may be also the basis

for obtaining synthesis procedures of these structures,

starting from the conventional synthesis procedure of

lumped element circuits.

An example is illustrated in Fig. 7 where the measured

scattering parameter ISZl I of a rectangular two-port struc-

ture, realizing a Cauer– Chebycheff low-pass filter is

plotted versus the frequency.

The rectangular structure has been synthesized accord-

ing to [18]. For comparison, the same figure shows the
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behaviors of the CC 31031 prototype and that obtained

according to [2].

IV. CONCLUSIONS

A broad-band equivalent circuit of a generic microwave

planar network has been derived in terms of lumped-

constant elements. These elements are only smoothly

frequency dependent, because of the dispersion properties

of microstrips, so that they may be considered, with good

approximation, to be constant with the frequency, even in

broad-band simulations.

Contrary to previously proposed equivalent circuits,

which are strongly frequency dependent, the present one

is easy to handle and can be a useful basis for designing

microstrip planar structures starting from conventional

synthesis procedures.

Experiments performed up to 12.5 GHz on structures

with different geometries have shown good agreement

with theoretical results.
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High-Accuracy Numerical Data on Propagation
Characteristics of a-Power Graded-Core Fibers
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Abstnrct-High-accuracy data of normafimd cutoff frequenci+ propa-

gation constan~ and delay tfme of LP.I modes for a-power graded-core

fibers (a= 1, 2, 4, and 10) are obtained by using two entirely different

methods power-series expansion and finite element mettmk+ and the

reaufts are compared. The difference between cutoff frequencies obtained
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by these metbod!s fs leas than 0.00S percent for most of the LP modes. Tke

obtained data are accurate enough to be used as the standard for esthat-

ing the accumey of other various analyses.

1. INTRODUCTION

VARIOUS methods have been presented for the ana,ly-
sis of propagation characteristics of optical filt)ers

having arbitrary refractive-index profiles. Examples of

those are the WKB method, [1] power-series expansion

method, [2] Rayleigh– Ritz method [3], finite element
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